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I. INTRODUCTION

The purpose of this document is to outline the the way MOSES views things from
a technical (mathematical) point of view, and to provide a brief description of the
numerical algorithms employed. Unfortunately, MOSES is based on several differ-
ent scientific disciplines and there is no common nomenclature for the basic ideas.
This complicates the task of chosing a notation scheme and of presenting the ideas.
Regardless of what system is used, it will be foreign to some readers.

Another difficulty is the scope of the subject itself. To give even brief treatment to all
aspects of MOSES, we must cover quite a bit of rigid body mechanics, finite element
analysis, and hydrodynamics. If we attempted to delve into all of the details of each
of these subjects, we would never finish. Also, the essence of the subject would be
hidden beneath the details.

As a result, we have chosen a method of presentation starting from a unified point
of view which is, of necessity, quite abstract. Thus, we later specialize the general
theory by considering parts of the whole problem.

Normally, we will pay little attention to mathematical niceties. We will assume that
functions are smooth enough to perform any operation we want.

In general, we will use bold face latin characters to denote vectors and tensors, with
lower case being used for vectors and capitals for tensors. Greek characters will
normally be used for scalars. An exception here is when a set of scalars are used as a
vector. Normally, complex quantities will be denoted by a superposed bar. In other

words, f̄ will denote a complex quantity f and ˜̄f will denote its complex conjugate.
We will denote the tensor product of f with n by f⊗n and the vector product of
f with n by f×n. Finally, a · will denote the inner vector product, a 1 will denote
the identity transformation, and the boundary of a region S will be denoted by ∂S.
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II. BASIC ALGORITHMS

Normally, numerical algorithms will be discussed when the need for them arises.
However, some algorithms are used so often that a general discussion of them is
appropriate. This section is devoted to that discussion.
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II.A Solving Equations

Almost everything done in MOSES involves solving a system of linear equations, i.e.
equations of the form

Kq = f . (II.1)

The precise method employed depends on the circumstances. For small matrices, or
for any system which does not have special properties, the basic Gausian Elimination
method with row pivoting is used. For ill-conditioned systems such as constraint
equations, column pivoting is also used.

When performing a stress analysis, however, simple elimination is not suitable. While
there is nothing wrong with elimination itself, these systems have special properties
which lend themselves to special treatment. In particular, they are sparse and sym-
metric. Thus, if one makes the effort, much less space is required to store the matrix
K and many of the computations can be omitted. The solver used in MOSES is
basically the one presented in [1] . Before effecting the solution, MOSES reorders
the matrix to minimize the profile using the algorithm developed by [2] . We will
now discuss two methods employed to solve a system of nonlinear equations

g(q′) = 0 . (II.2)

The first method was originally invented by Newton, but with minor variations has
been attributed to numerous others. This scheme can be described as follows: Sup-
pose that one has an estimate (or starting point), q0 , of the solution, and that q′ is
a new estimate of the solution. We can write the error, e, as

e = g(q′) . (II.3)

Now, if the function g is expanded in Taylor’s series about q0, we find

e(q′) = g(q0) +
∂g(q0)

∂q
(q′ − q0) + t . (II.4)

Here, t is a term of second order in (q′ − q0). Since the objective is to make e zero,
we can formally write

q′ − q0 = K−1(g(q0) + t) (II.5)

where K, often called the stiffness, is given by

K = − ∂g(q0)

∂q
. (II.6)

Notice that since t also contains q′ this expansion is really no better than the previous
one. If, however, t is neglected, (II.5) provides a new estimate which, hopefully, will
have a smaller error. This process can be repeated until some ”closure” tolerance is
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achieved, or until some number of iterations has been made. In other words, one uses
the current estimate, q0 and solves

q′ = q0 + K−1(q0)g(q0) (II.7)

to obtain a new estimate. There are two important features of this scheme. First,
the convergence (or divergence) will be quadratic. Second, it is only applicable to
systems where K is non-singular.

Let us consider a solution of the system, q, and let the region around the solution
where K is non-singular be R. It can be shown that if K is positive definite at
q then the algorithm will converge whenever the initial estimate is within R, and
the convergence will be quadratic. Therefore, when using this algorithm, it is very
important to start with a ”good guess”. Often, the difficulties in finding a solution
arise when K is ”close to singular”. Here, (II.7) will predict too large a change
in solution. Problems of this nature can be ameliorated by limiting the change in
solution for a single step to some maximum. More difficult problems occur when K
is, in fact, singular. In this case there may be no solution to the problem at all.

The other algorithm of interest is the Picard method, often called the method of
successive approximations. To proceed, we define a new function, f as

f(q′) = g(q′) + q′ . (II.8)

Now using this definition in (II.2) , we get

q′ = f(q′) . (II.9)

The algorithm is simply based on using this equation to produce a new estimate of
an existing one as

q′ = f(q0) . (II.10)

The convergence here is slower than with a Newton method, and the conditions for
convergence are more restrictive, but for particular classes of g, it will never fail!
In particular, if K has a norm less than 1, then a Picard method will converge
uniformly.
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II.B Time Series, Spectra, and Extremes

Often, we need to represent a function of time, and do not know all of the details of
the function. In this case, we will approximate the function with a series expression
which is similar to a Fourier series:

f(t) ∼ <
(∑

c̄jej

)
(II.11)

where
ej = ei(ωjt+βj) ,

i is
√
−1, c̄j are complex constants, ωj and βj are real constants, and < signifies that

only the real part of the sum is to be considered. Without loss of generality, we will
assume that all ωj are positive and ordered so that

ωj < ωk when j < k

We will reserve the zero subscript for cases when ωo = 0.

The constants in the series are determined by a ”least squares fit”. In other words,
we will consider the error in the expansion (II.11)

r = f(t)−
∑

c̄jej (II.12)

and we will chose the coefficients so that the mean square error,

C=M (rr̃) ,

will be a minimum. Here, r̃ is the complex conjugate of r, and the mean operator is
defined as

M (f) = lim
T→∞

1

T

∫
0

T

f dt. (II.13)

To minimize the error, we take the derivative of C with respect to each of the coeffi-
cients, c̄k, and set the result to zero. This yields the set of n equations

M
((

f(t)−
∑

c̄jej

)
ẽk

)
= 0

where ẽ is the complex conjugate of e. Now, rearranging the above slightly, we get

M (f(t)ẽk) =
∑

c̄jM (ej ẽk) .

As is easily established

M (ej ẽk) = lim
T→∞

1

T

∫
0

T

ej(t)ẽk(t) dt =
{

1, if k = j;
0, otherwise.

(II.14)
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Thus, we have an easy formula for the coefficients

c̄k =M (fẽk) = lim
T→∞

1

T

∫
0

T

f(t)ẽk(t) dt . (II.15)

Even though we can now find the coefficients, the constants ωj and βj remain ar-
bitrary. Therefore, it is best to interpret (II.15) is: if the constants have been
specified, then the best mean fit is obtained by computing the coeffifients according
to (II.15) .

To shed a bit more light on the constants, let us consider means of the function itself.
First consider the mean which is easily computed as

M (f) =<
(
M

(∑
c̄jej

))
or

M (f) =< (c̄o) . (II.16)

In other words, the function has a zero mean if a zero frequency is not included in
the representation.

Now, consider the auto-correlation:

R (f, to) =M (f(t)f(t + to))

which can be written as

R (f, to) =
1

4

∑∑
lim

T→∞

1

T

∫
0

T

[I1kj + I2kj + I3kj + I4kj] dt

where

I1kj = c̄j c̄kej(t)ek(t + to) ,
I2kj = ˜̄cj˜̄ckẽj(t)ẽk(t + to) ,
I3kj = c̄j˜̄ckej(t)ẽk(t + to) , and
I4kj = c̄j˜̄ckej(t + to)ẽk(t) . (II.17)

If we restrict ourselves to zero mean, so that we have only positive frequencies to deal
with, it is easy to see that the first two terms of the integral vanish for all k and j. If
we now use (II.14) on the remaining two terms, we arrive at

R (f, to) =
1

4

∑
c̄k˜̄ck [ek(to) + ẽk(to)]

or

R (f, to) =
1

2

∑
c̄k˜̄ck< (ẽk(to)) .
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To relate this result to something more useful, we will define the spectral density
function (also called the spectrum), S, of f by

S(ωk)δωk =
1

2
c̄k˜̄ck , (II.18)

where

δωk =
1

2
(ωk+1 − ωk−1)

so that we can finally write

R (f, to) =
∑

S(ωk)δωk< (ẽk(to)) .

Several important things can be said about this result. First, (II.18) is a formula
for computing the coefficients if the spectrum of the function is specified. More
importantly, however, it provides a guide for how many and which frequencies should
be used in the series representation. The frequencies should be chosen so that the
major features of the spectrum can be reproduced. If the spectrum is specified, we
have a way of chosing both the frequencies and computing the coefficients. The
phases, or βj, still remain arbitrary. Another way of saying this is that for a given
set of frequencies there are many different series which will have the same spectrum.

Another important implication of (II.18) is revealed when we consider the auto-
correlation at zero. Here, we have

R (f, 0) =
∑

S(ωk)δωk =
1

2

∑
c̄k˜̄ck =M

(
f 2
)

(II.19)

so that we can conclude that the area under the spectrum is equal the mean of the
square, and also half the sum of the squares of the coefficients.

In the definition given above, the spectrum is defined only for the frequencies in the
series. It is natural to extend this to include all frequencies and to consider the above
as a consequence of the discrete nature of the series. With the extended definition,
we have

mo =
∫
0

∞
S(ω) dω =M

(
f 2
)

(II.20)

where mo is called the zeroth moment of the spectrum. Likewise, we can define the
nth moment of the spectrum as

mn =
∫
0

∞
S(ω)ωn dω . (II.21)

A final bit of nomenclature is that for functions with zero mean, we can define

σ2 =M
(
f 2
)
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where σ is called the variance of the function f.

Normally, spectra are defined in terms of a ”significant” value. Do not be misled.
Significant has a precise mathematical meaning, it is not really a synonym for im-
portant. The definition of significant is intertwined with the concept of the Rayleigh
probability distribution

P (x) =
∫ ∞

x
p(y) dy

where
p(y) = 2αye−αy2

and

α =
1

2mo

.

Here, P (x) is the probability of an extreme being greater than x. We now ask the
question: What value has a probability of 1/n of being exceeded? In other words,
what is the value x∗ which satisfies

1

n
=
∫ ∞

x∗
p(y) dy .

If we evaluate the integral and solve, we find

x∗ =
√

mo

√
2Ln(n) .

With this information, we can evaluate:

A1/n =

∫∞
x∗ yp(y) dy∫∞
x∗ p(y) dy

which yields A1/n, the average of the 1/nth highest extremes. Evaluating these
integrals yields the final result

A1/n =
√

2mo

{√
Ln(n) +

n
√

π

2

[
1− erf(

√
Ln(n))

]}
. (II.22)

Evaluating the above for different values of n, we find

A1 = 1.25
√

mo ,
A1/3 = 2.00

√
mo ,

A1/10 = 2.54
√

mo ,
A1/100 = 3.03

√
mo , and

A1/1000 = 3.72
√

mo . (II.23)

Finally, notice that for large n, (II.22) becomes

A1/n '
√

mo

√
2Ln(n) .
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A Tale of Twos - A Question of Taste: The results above may not be what one
is accustomed to seeing. They are based on the amplitude of the function, and many
developments deal in height. This causes a great deal of confusion. In particular,
one must be very careful when comparing spectral ordinates between two different
sources. The can easily differ by a factor of 2,

√
2, or 4, and both be correct within

their own domain. MOSES deals with this problem by always asking for a significant
height when you define a spectrum. It then scales the ordinates so that the area
under the curve is the proper value; i.e. Using the definition above, we have

A1/3 = 2.00
√

mo (II.24)

so that
H1/3 = 4.00

√
mo (II.25)

or finally
Hs

2/16 = mo . (II.26)

All spectra in MOSES have an area of the significant height squared over 16.

We would really like to use max to predict the ”maximum” response over some time.
To do so requires an estimate of the number of cycles during this time. There are
many way to define a period; e.g. the ratio

wz =

√√√√M (
ḟ 2
)

M (f 2)
or

wz =

√
m2

m0

(II.27)

is, in fact, the frequency for a single component and can be viewed as an average
period. This is not the only ratio which yields an average frequency:

Tm = 2π
m0

m1

and

Tz = 2π

√
m0

m2

. (II.28)

are both commonly used. Here, Tm is called the Mean, Average, or Observed period,
and Tz is called the ”Zero Up Crossing” period.

MOSES uses Tz to give a ”maximum” over a specified time; i.e. using max and the
above definition for Tz,

Amax(T ) =
√

mo

√
2Ln

(
T

Tz

)
. (II.29)
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II.C Least Squares Distribution

Often we are presented with a situation where we wish to accomplish a given task
and yet have a set of constraints satisfied. Mathematically, this can be expressed as:

g =
n∑

i=1

giei . (II.30)

Now, if n is equal the length of the e vector, the above can simply be solved for the
components gi. Often, however, n is larger and we have an under-determined system.

As an example, suppose that we are distributing the load from a load group to a set
of nodes. Then (II.30) is a statement that the sum of the forces applied at each node
must be equivalent to the force system produced by the load group. Alternatively, if
we were repositioning a vessel, it is as a statement that the the the sum of the forces
in the mooring system be equal to the environmental forces. In either of these cases
there are normally more unknown force components than 6.

To resolve this ambiguity, let us define the ”cost” function

C =
∑

g2
i (II.31)

and require in addition to (II.30) that C be a minimum. Thus, we form

C =
∑

g2
i + 2λ·

(
g −

∑
giei

)
(II.32)

Taking the partial derivative of (II.32) with respect to gk we get the original con-
straint (II.30) and the new conditions:

gk = λ·ek (II.33)

This particular system can be solved quite simply. First multiply (II.33) by ek and
then sum over k to get ∑

gkek =
[∑

ek⊗ek

]
λ (II.34)

The left hand side is, however, simply the right hand side of (II.30) . Thus summa-
rizing we have

gk = λ·ek (II.35)

where λ is the solution of
g =

[∑
ek⊗ek

]
λ (II.36)

It should be mentioned that this algorithm produces force that are sl not in the
direction of the applied force g. In fact, there is another way to view this algorithm.
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Suppose that the points at which the gi are applied are point on a rigid structure.
Also, suppose that each of these points are connected to ground by a spring of stiffness
k in the direction ei. The the energy in the system when a force is applied is

E =
2

k

∑
δi

2 + δog·e (II.37)

Now, since the structure is rigid, we have have the kinematic constraint

δi = δoei·e (II.38)

Putting this constraint into the energy expression and minimizing yields

g =
[∑

ei⊗ei

]
kδo (II.39)

This is exactly the same equation as (II.36) except that the La Grange multiplier
λ is replaced by the spring constant times the deflection.
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III. PROCESSES

Basically, the purpose of MOSES is to simulate a physical process, predict the con-
figurations, and then assess the integrity of the parts of the system. Before getting
deeply involved, we had better define some of these things more precisely. First, the
universe to MOSES is: a set of bodies, a set of connectors, an environment, and the
”ground”.

A body is a collection of ”particles” and it has a measure, ”the mass”, associated with
it. For the moment, it suffices to say that there is a mapping of the particles of the
body into the points in space-time. We call both the values of the mapping and the
mapping itself ”the generalized coordinates of the body”. The particles which make
up the body are a primitive. As the need arises, we will impose many restrictions on
the smoothness of the mapping. Although it is not necessary, it is best to think of the
body as being mapped into a ”nice” region of space. In other words, at any instant,
the region of space occupied by the body: is connected, has a boundary continuous
enough to apply the divergence theorem, and the mass is a continuous function of
the space coordinates. A part of the body is simply a subset of the body with ”body
like” properties.

Connectors are entities which create forces between two bodies, or between a body
and the ground. Normally, connectors have no mass, and no forces act on them other
than the connection forces themselves.

The environment and the ground are basically used to ”fill up” the remainder of space.
The ground is the complement of bodies and connectors in space. The concept of
environment is that it produces actions on the system due to everything other than
the connectors; i.e. the environment is the wind, sea, temperature, etc.

A configuration is simply the set of generalized coordinates of the system at an
instant. A process is a one parameter family of configurations. MOSES considers
basically three types of processes: static, time domain, and frequency domain; i.e.
MOSES condsiders three classes of the parameter: integers, time, or frequency.
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III.A The Lagrange Equations

We now turn to the mathematics which govern processes; i.e. we wish to produce a
system of equations which can be solved for the quantities of interest, the generalized
coordinates, which will be denoted by q. These coordinates suffice to determine the
location and velocity of each particle in the system by a set of transformations

x = x̂(x, q) (III.1)

and
ẋ = V (x, q)q̇ (III.2)

where

V =
∂x̂

∂q
(x, q) . (III.3)

The equations which govern the evolution of the generalized coordinates are the
Lagrange equations

d

dt

∂T

∂q̇
− ∂T

∂q
= g (III.4)

where T is the kinetic energy of the system and g is the generalized force acting on
the system. The kinetic energy is defined as

T =
1

2

∫
S

ẋ·Bẋ dm (III.5)

where S is the system under consideration, B is a symmetric matrix, and the inte-
gration is with respect to the mass.

The generalized force is defined by

g·q̇ =
∫

∂S
q̇·f ds +

∫
S

q̇·b dm . (III.6)

Here, f is the force applied to the boundary of the system, and b is the force applied
to the interior of the system. Notice that both the kinetic energy and the generalized
force are defined by integrals over the system, and thus, can be considered to be the
sum of the quantities over disjoint parts of the system. In other words, if the the
union of Bi is S, and the intersection of Bi is empty, then

T =
∑

i

T (Bi) (III.7)

and
g =

∑
i

g(Bi) . (III.8)
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We will now use the transformation (III.3) to obtain a more appealing representation
of both the kinetic energy and the generalized force. First, notice that we can write
(III.5) as

T =
1

2
q̇·Iq̇ (III.9)

where
I =

∫
S

V T BV dm . (III.10)

Here, I is called the inertia tensor of the body, and it depends only on the properties of
the body, the generalized coordinates, and perhaps the time. If we turn our attention
to the generalized force, we obtain

g =
∫

∂B
V T f ds +

∫
B

V T b dm . (III.11)

Using these results, we can express the equations of motion as

d

dt
(Iq̇) = g +

∂T

∂q
. (III.12)

As is well known, the system (III.12) along with a set of initial generalized coordi-
nates and their derivatives will yield a unique solution provided I is positive definite
and mild regularity restrictions are placed on g and ∂T

∂q
. For the remainder, we will

assume that these restrictions are satisfied.
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III.B Generalized Degrees of Freedom

Our purpose here is to define the generalized coordinates discussed above. While
the ideas are simple, the discussion is difficult because we want to be precise enough
so that we can use the results, but we also want to retain flexibility to change the
coordinates to suit later purposes. Toward that end, suppose that the global location
of each point on the body can be expressed as:

x′(x) = x′
o + Ry(x) (III.13)

where x′ is the global location of the particle x, x′
o is the global location of a reference

point on the body, y is a vector from the reference point to particle x expressed in
local body coordinates, and

RT R =1 . (III.14)

The condition (III.14) states that the transformation from body coordinates to
global ones is orthogonal. Let us compute the velocity

ẋ′ = ẋ′
o + Ṙy + Rẏ . (III.15)

Now, differentiating (III.14) with respect to time yields

RT Ṙ = − ṘT R (III.16)

so that RT Ṙ is skew. Since a skew transformation has only three independent com-
ponents, there exists a unique vector, w, such that

RT Ṙy = w×y . (III.17)

The vector w is called the angular velocity of the body in local coordinates. The
above can also be represented as

w×y = L(y)w (III.18)

where L is a skew transformation, i.e.

L(αy1 + βy2) = αL(y1) + βL(y2)

for every α, β, y1, and y2, and
LT = −L . (III.19)

Until now, very little has been said about y. Before introducing an assumption on
its behavior, notice that if the body is rigid, y is a constant. Thus, any variation in
y must be attributable to the deformation of the body. Precisely how y depends on
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deformation is the subject of the next section. In the interim let us assume that y
depends on a finite set of variables, d, so that

ẏ =
∂y

∂d
ḋ

or
ẏ = P ḋ . (III.20)

If we combine this with the above, we get

ẋ′ = R
[
ẋo + L(y)w + P ḋ

]
. (III.21)

We will now define
V (y) = [1 L(y) P ] (III.22)

so that the velocity can be written as

ẋ′ = RV q̇ (III.23)

where

q̇ =

 ẋo

w
ḋ

 . (III.24)

This is the result we have been seeking. It gives the velocity at a point of the body
in terms of a set of generalized velocities, q̇. The first component of q̇ is simply the
velocity of a reference point on the body expressed in local coordinates. The other
two components are more difficult to interpret. As stated above, w is the angular
velocity of the body in local coordinates. In a moment we will look at this in more
detail. The last term in the generalized velocity is ḋ which is a measure of the velocity
of deformation of the body.

Let us now turn our attention to R. The orthogonality conditions (III.14) on
R provide six independent constraints on the nine elements and thus only three
quantities are required to define the rotation. A convenient choice of these three
quantities is three successive rotations defined by ”Euler angles”. Mathematically,
this can be expressed as

R = R1R2R3 (III.25)

where

R1 =

 1 0 0
0 + cos θ1 − sin θ1

0 + sin θ1 + cos θ1

 ,

R2 =

+ cos θ2 0 + sin θ2

0 1 0
− sin θ2 0 + cos θ2

 , and
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R3 =

+ cos θ3 + sin θ3 0
− sin θ3 + cos θ3 0

0 0 1

 . (III.26)

To determine the orientation of the body defined by the Euler angles, begin with the
body system and the global system aligned, and rotate the body about the local X3

axis an amount θ3. Continue by rotating the body about the new X2 axis an amount
θ2, and finally, rotate about the new X1 axis an amount θ1 .

Consider, for a moment, the behavior of R for small values of the angles. Since

Ri ' 1 + LT (θiei)

where ei is a unit vector in the direction i, we can write

Ṙ '
∑

[LT (eiθ̇i)] . (III.27)

From above however, we have
Ṙ = LT (w)

so that for small angles
w '

∑
eiθ̇i ; (III.28)

i.e. the angular velocities are rates of change in the angles about the local axes. In
general, the angle changes will not be small. To cope with this situation, consider
two rotations: a large one defined by U , and a small one defined by S, so that

R = SU . (III.29)

This gives us the recipe we need to compute the new direction cosine matrix for
small changes in angle: we first find the small changes in angle (integrate the angular
velocities), build a direction cosine matrix for the change, and compose it with the
previous direction cosine matrix to find the new one. This procedure, however, does
not yield a new set of Euler angles. It simply yields a new direction cosine matrix.
One can, however, find a set of Euler angles from any given R, (these are not unique)
so knowledge of R is all that is required.
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III.C Interpolation and Approximation

If we were content to consider only rigid bodies, we would have all of the theory we
need. Our goal, however, is to solve for the stresses in the bodies during both static
and dynamic situations. We therefore adopt the finite element method; i.e. we will
suppose that one body is actually composed of several smaller, disjoint sub-bodies
called elements, and that there is a a finite set of particles, called nodes, which are
special. In particular, we will assume that the elements are small enough so that the
location of all points in an element can be found by interpolation from the location
of the nodes in the element; i.e. if x is in an element l, then its location y in the
body system is given by

y(x) = yo(x) +
∑
k

∑
j

Φlk(x− xk)ejd
′
kj

or
y(x) = yo(x) + P ′d′ (III.30)

where k is summed over the number of nodes in the element, and j is summed from
one to 3. Here, Philk are local interpolation functions, normally polynomials. This
provides a concrete representation for the assertion made in the previous section.

Quite a few things need to be said here. First, in practice, we need continuity
conditions for the values of y as we cross element boundaries. Next, for some types
of elements we also need to interpolate the second derivative based on the slopes at the
nodes. This type of detail is quite important in developing a theory of finite elements,
but is not what we are interested in here. Our objective is to integrate finite element
theory within our framework, not invent the the details. For a complete discussion
of precisely how one builds a theory of finite elements, see [4] . We will, however,
require

Φlk(xk − xk) = 1

and
Φlk(xj − xk) = 0

for j 6= k so that when (III.30) is used with a node, we get

y(x)− yo(x) =
∑
j

ejd
′
kj

which substantiates our assertion previously about d′ being the deformation.

One problem we have is that while (III.30) gives a rule for computing the location of
points in elements, there may be points in which we are interested that do not belong
to any element. Until now, we have not really talked about how a body is modeled,
but MOSES has necessary concepts which need points that may not be nodes and
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which are not in structural elements. For example, we need to compute the pressure
on the ”exterior” of the body due to wind and the sea. This exterior is modeled as a
set of panels. If panels correspond to structural elements, all is well. If, however, one
has a beam element model of the body, what do we do about the panels? The way
MOSES deals with this is to associate the closest node with each point that is not a
node. In this way, we also have the location of these ”strange” points available.

If the above is used in the expression for the equations of motion, we find that we have
a system of 6+n differential equations which govern the motion of a body. Six of these
correspond to the gross motion of the body and n of them govern the deformation.
If we need a large number of degrees of freedom to describe the deformation, this
leads to a problem with substantial computational effort. The standard approach is
to decouple the problem; i.e. one assumes that the deformation inertia is small in
comparison to the gross inertia. Then one has a system of 6 differential equations
which govern the gross motion. Once these are solved, the deformation problem is
solved using the gross inertia as a force. An alternative is to ignore the nonlinearities
of the general equations of motion and solve the n differential equations for the
deformations by a modal superposition method. While each of these approaches is
quite useful and yield excellent results for special cases, each has its drawbacks.

When one uses the rigid body approach, he is not only neglecting deformation inertia,
but deformation itself. While not large, there are cases where the deformation can
be important. Similarly for ”large” structures, the deformation inertia can become
important. The most serious deficiency with the modal approach is that the inertia
matrix must be constant and the damping matrix must be ”nice” in the sense that
the equations uncouple. With problems ”in air” this is not a serious restriction, but
in water it raises serious questions. The free surface condition for floating bodies
creates added mass and a damping matrix which are frequency dependent, and the
damping matrix is not ”nice”. Thus, for large bodies in water we are left with a
choice between two bad alternatives.

Let us consider an alternative. Suppose that the details of the deformation are not
important but some aspects of it are; i.e. suppose that there is a projection of d′

into a smaller subspace which does an adequate job of describing the deformation
grossly, or that there are m, m ≤ n deformation vectors which adequately describe
the deformation for gross computation of motion. These vectors are called generalized
coordinates. With this approximation, (III.30) becomes

y(x) = yo(x) + P (x)d . (III.31)

The meaning of P and d is quite different from that of P ′ and d′. The matrix P ′,
in essence, defines the topology of the model. P is simply a set of three vectors,
a combination of the deformation of the nodes corresponding to each generalized
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coordinate. From another point of view, we are saying that an arbitrary deformation
field, d′ can be approximated by

d′ ' Pd (III.32)

where the columns of P are the vectors mentioned above.

Notice what we are proposing is to use an approximation to the deformation only to
solve for the motion, not to produce detailed results inside the body. In particular,
we propose (III.32) to simplify and solve the equations of motion. Then at points
of interest during a simulation, we will perform a detailed stress analysis, using
all degrees of freedom for the stiffness and the approximation to the velocities and
accelerations in computing the force. What should result is something better than the
rigid body assumption because the deformation and its derivatives are accounted for
more rationally than to assert that they be zero. This approach should be equivalent
to the modal superposition technique if the modes used in the superposition are used
for the generalized coordinates and the problem is ”nice” in the sense described above.
It should be better than modal superposition for problems which are not ”nice”.

Now, let us be more precise. Suppose that we have a body that is composed of a
linear material, that undergoes small deformations, and that we have a finite element
model of it. The result is that the forces internal to the body can be given by:

g′d = −K′d′ . (III.33)

Using (III.32) , we can transform this into

gd = −Krd (III.34)

where
Kr = P T K′P . (III.35)

In other words, we have replaced the dependence of our problem on the deformation
with a contribution to the force of (III.34) and a contribution to the stiffness of
(III.35) . All of the other contributions to the equations of motion can now be
computed based on the model, (III.31) , and (III.32) .

It is hard to minimize the importance of this result. First, notice that if the matrix
P is the identity, the only approximations involved are those inherent in the finite
element model, so (III.41) in this case are the equations of motion for a linearly
elastic body undergoing small deformations that require computation of only the
boundary forces and the inertia at each step. We could have employed a reduced
inertia matrix so that the above would have involved computing the boundary forces,
but in most problems of interest here, the inertia changes with time. As we use
fewer and fewer generalized coordinates, the equations become more approximate.
For a few generalized coordinates, (III.41) is nothing more than a formalization of
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the standard energy estimates one was taught to make in school. The real beauty,
however, is that a single formalism and set of algorithms work for approximations of
all fidelity. Furthermore, by using the approximate inertia as forces applied to the
complete stiffness matrix, we have a mechanism of producing excellent deformations
and stresses at any point of a simulation.

In conclusion, let us say a few words about how one may choose the generalized
coordinates. The most obvious way is to pick a subset of the modes of the system;
i.e. solve for some of the natural frequencies and mode shapes of a body and use
these as the generalized coordinates. If this procedure is followed, our scheme is
equivalent to modal if the problem is linear. Our scheme, however, allows for the
inertia matrix to change with time, the damping to be of any form, and nonlinear
boundary conditions. As with any modal analysis scheme, you need to have enough
modes to capture the input energy. Also, here, you need to have enough modes so
that you can create deformation at points where boundary conditions are applied.
For example, suppose that you fix a point in the structure and find a set of modes.
During the simulation, you also want to apply a connection at another point which
effectively fixes it. If you cannot produce a linear combination of your set of modes
that have zero deformation at the second point, your answers will not be very good.
In cases where the boundary conditions change during the process, a better choice of
generalized coordinates would be deflections of the structure to a set of unit forces
applied at a set of points - the points which yield the maximum deflection and those
where connections will be applied. This is essentially a statement of the Rayleigh-Ritz
scheme: pick a deformation which satisfies the boundary conditions and minimize the
energy.
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III.D Equations of Motion

Let us now return to the basic equations of motion and use our specific generalized
coordinates to present a more specific form. First, consider the term

h =
d

dt
(Iq̇) . (III.36)

The vector h is a vector in the body system and its representation in the global
system is given by

hg = Qh (III.37)

where

Q =

R 0 0
0 R 0
0 0 0

 .

Computing the time derivative of (III.37) yields

ḣg = Q̇h + Qḣ (III.38)

or
QT ḣg = QT Q̇h + Iq̈ + İq̇ .

We learned above, however, that

RT Ṙy = L(y)w = LT (w)y ,

so the second term in (III.38) can be written as

Q̇h = N (q̇)q̇

where

N (q̇) =

LT (w) 0 0
0 LT (w) 0
0 0 0

 I .

If we now combine all of these results, (III.38) can be written as

Iq̈ = g −
(
İ + N (q̇)

)
q̇ −Krq (III.39)

where we have used the approximation for the deformation forces and the generalized
forces here, g, are only the boundary forces. Also, the reduced stiffness, Kr, differs
from that defined above by zeros in the first six degrees of freedom.

Before turning to specific processes, we will present the form of the equations of
motion which will be commonly used. Suppose we have a known set of generalized
coordinates, q0. If we first define

C(q0, q̇0) = −∂g

∂q̇
,
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K(q0, q̇0) = −∂g

∂q
−Kr , and

s(q, q̇, q0, q̇0) = g(q)− [C + N + İ]q̇ −Kq (III.40)

and use these definitions in the above, we obtain the final representation

Iq̈ + Cq̇ + Kq = s . (III.41)

The matrices C and K are called the tangent damping and stiffness matrices at the
state (q0, q̇0) respectively. The vector s will also be called the generalized force. It,
however, differs from g in that it depends on the generalized coordinates and their
time derivative by terms of order greater than one in the difference of the coordinates
q − q0 and velocities q̇ − q̇0.

Finally, notice that we can rewrite (III.41) as

Kq = s− Iq̈ −Cq̇ (III.42)

so that the equations of motion could be viewed as a static system at some time,
provided that the velocities and accelerations were specified at that time. This seems
to be a useless result, but as we will see later, it is more useful than appears.
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III.E Static Processes

A static process is one in which the time behavior of the generalized forces is suffi-
ciently slow that all time derivatives of body properties can be neglected. In other
words, İ, q̇, and q̈ are all small enough to be neglected. If we evict these terms from
the basic equations of motion, we get

s(q, t) = 0 . (III.43)

This is a deceptively simple equation; the exercise of finding an equilibrium configu-
ration is one of the most difficult things that MOSES does. One of the complicating
factors is that, since (III.43) may be nonlinear, there may be more than one equi-
librium configuration. When one finds an equilibrium configuration, care should be
used, it may not be the one that occurs in real life.

To solve for the configurations which satisfy (III.43) it would be tempting to use
the Newton method discussed above, but we have some problems. The main problem
is that in many cases the stiffness matrix is singular. For example, consider a freely
floating ship. Here, one has stiffness in heave, roll and pitch, but none in surge, sway
and yaw. Blindly applying a Newton method here is not effective. Let us consider
the Newton method for a moment; i.e. suppose that we have a configuration defined
by q0. To find a new configuration which is closer to the solution, we compute

q′ = q0 + K−1(q0)g(q0) .

To avoid a possible singularity in K, suppose we replace it with

K′ = − ω2I + K

where ω is a small parameter which we can specify. This should fix the singularity
problems because for degrees of freedom where K is not singular, the inertia term will
be negligible and for singular degrees of freedom of K it adds a term on the diagonal.
Even with this additional term, the method may yield a change in configuration which
is ”too large”; i.e. the new position may actually be further from the desired one
than the old one was. To prevent this, there is an additional parameter, m, which
limits step size. Suppose that δ is the change in a coordinate (element of q vector).
Then what will actually be added to the old coordinate xo to get the new one xn is
given by

xn = xo +

{
δ if |δ| ≤ m
mδ
|δ| otherwise.

When using this modified Newton method, there are two reasons that one may not
find a configuration with tolerance: the step size MOSES takes may be too small or

MOSES Technical Issues Page 24



it may be too large. When one is far from equilibrium, large steps are needed if one
is to get close within the maximum number of iterations. Here, the default value of
m may need to be increased so that larger steps can be taken. This may not help
if ω is what is limiting the step size. You see, the term we added to minimize the
chance of a singular stiffness also reduces the step size. For systems with large inertia
and small stiffness, the ”small extra” can actually dwarf the stiffness. The fix here
is to decrease ω. Caution is, however, in order. The defaults are set for reliability.
Following the above advice can create the other problem - too large a step.

For very stiff systems or systems with tensions only element, equilibrium may fail
because steps which are too large are being taken. Here, MOSES thinks it needs to
move ”a good bit”, but once it gets there it finds it has gone too far. Here, the way
to help is to make m smaller.

The advice given here may appear contradictory, but there are two distinct cases. If
you have problems, you first need to find out the cause. The best way to eliminate
difficulties is to begin with a good guess. This eliminates several problems: you no
longer need ”big steps” to find equilibrium, and you are much more certain that the
configuration you have found is, in fact, the one you want.
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III.F Time Domain Processes

Time domain processes are simply a set of configurations which satisfy the basic
equations of motion (III.41) . They are quite important since they are the only
means of properly accounting for all aspects of a problem. Unfortunately, they are
also computationally expensive. The equations of motion are differential equations
(actually as we will see later they are integro-differential equations). We effect a
solution by converting them into a sequence of algebraic equations which can be
solved by a Newton method. There are many techniques which can be used in this
process, each of which can claim superiority in certain situations. The one which
seems to work well in most circumstances, and is described below, is the Newmark
method. For a complete discussion of this technique, see [3] . Remember that the
equations of motion can be written as

Iq̈(t) + Cq̇(t) + Kq(t) = s . (III.44)

Now, suppose that we know the solution at time t1 and want to estimate the solution
at t2. We can formally write

q̈(t2) = q̈(t1) + a ,
q̇(t2) = q̇(t1) + δq̈(t1) + γδa , and

q(t2) = q(t1) + δq̇(t1) +
1

2
δ2q̈(t1) + βδ2a (III.45)

where δ = t2 − t1 and a, γ, and β are constants. Eliminating a from (III.45) gives

q̈(t2) = aq̈(t1) + bq̇(t1) + c [q(t2)− q(t1)]
q̇(t2) = dq̈(t1) + eq̇(t1) + f [q(t2)− q(t1)] (III.46)

where

a = 1− 1

2β
,

b = −
(

1

βδ

)
,

c =
1

βδ2
,

d = δ

(
1− γ

2β

)
,

e =

(
1− γ

β

)
and

f =
γ

βδ
. (III.47)

Using (III.47) in (III.44) allows us to get an equation which can be solved for the
location at t2.

S[q(t2)− q(t1)] = s̄ (III.48)
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where

S = cI + fC + K and
s̄ = s− [aI + dC] q̈(t1)− [bI + eC] q̇(t1) . (III.49)

Once q(t2) is obtained, (III.47) can be used to find q̈(t2) and q̇(t2).

One should notice that (III.47) is nonlinear in that all of the quantities depend
on q(t2). In practice, MOSES iterates this solution evaluating the functions at the
last iterant until the change in location is less than a specified tolerance. Also, a
few words should be said about the Newmark parameters γ and β. The defaults are
.25 and .5. There is almost no numerical damping with these values. In fact, for
some problems, the scheme results in small negative damping. If these values are
changed from the default to .33 and .66, then a small bit of numerical damping is
induced. Normally one does not need to worry about this, but for problems such as
decay problems in calm seas, the defaults do not work very well. The following figure
illustrates this effect for the heave decay of a semisubmersible.

Figure 1: Effect Of Newmark Parameters
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III.G Frequency Domain Processes

As mentioned above, a time domain solution offers extreme insight into the behavior
of the system for an extreme cost. In many cases an alternative, a frequency domain
process, is attractive. Before discussing the relative merits of the two approaches, we
must first define precisely what we mean by a frequency domain process. In essence,
we will seek an approximation of the equations of motion which is the sum of a static
part plus a small deviation. To this end, we approximate the generalized coordinates
with a time series as discussed above:

q ' <
(∑

ejq̄j

)
(III.50)

where as before,
ej = ei(ωjt+βj)

and i is
√
−1. Notice that (III.50) can also be written as

q ' 1

2

∑
[ẽjq̄j + ej ˜̄qj] (III.51)

where ã denotes the complex conjugate of a. With this approximation, the equations
of motions will not necessarily be satisfied, and we can write them as:

r = Iq̈ + Cq̇ + Kq − s (III.52)

where r is the residual resulting from the approximation and the inertia, damping,
and stiffness matrices are evaluated at the mean position. We do not know the mean
position a priori, instead, it will result as the solution for the zeroth frequency. We
now use a Galerkin method to find the set of q̄j which gives zero mean residual.
Thus, let us define the operator, F , by

Fk(x) = lim
T→∞

2

T

∫
0

T

ek(t)x(t) dt . (III.53)

Before proceeding, let us deduce some of the properties of Fik. First, by simple
integration, we find that

Fk(ẽj) = lim
T→∞

2

T

∫
0

T

ek(t)ẽj(t) dt
{

2 if k = l
0 otherwise

and

Fk(ej) = lim
T→∞

2

T

∫
0

T

ek(t)ej(t) dt = 0 .

Now, let us compute

Fk(q) =
1

2

∑
j

[Fk(ẽj)q̄j + Fk(ej)˜̄qj]
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or, using the above,
Fk(q) = q̄k .

The following are also useful:

Fk(q̇) = iωkq̄k ,
Fk(q̈) = −ω2

kq̄k ,
Fk(< (aek)) = a ,
Fk(< (ael)) = 0 , and

Fk

(∫ t

−∞
D(t− τ)q̇(τ) dτ

)
= Fk(D)Fk(q̇) (III.54)

where a is a constant. Most of these results are simple consequences of those above.
The last one, which is a bit more involved, is a simple extension of the convolution
theorm from Laplace transforms. Our assumption on the form of q is sufficient for all
of these results except the last. Here, we need also that D be bounded and D(ξ) = 0
for ξ < 0.

If we use this operator on (III.52) , use the properties discussed above, and set the
residual to zero, we arrive at a set of n + 1 equations:

F (ekr) =
∑
j

S̄j(q0)q̄j − s̄k = 0 (III.55)

where

S̄j(q0) = −ω2
j I(q0) + iωjC(q0) + K(q0) and

s̄k = Fk(s) = lim
T→∞

2

T

∫
0

T

ek(t)s(·) dt . (III.56)

While these equations are valid for all k, it is instructive to notice that for k = 0 it is
a bit different in form. Here,

K(q0)q0 = s̄0

which needs to be solved for the mean position before the frequency components can
be computed. We will find out later that the mean may depend on the values of q̄k

so that the solution for the mean may be coupled with that for each frequency.

At this point, we have reduced the original system of m differential equation to a
system of n + 1 sets of m algebraic equations. To appreciate the significance of this,
let us examine a special case. In particular, let

s =
∑

l

al< (elul)−Aq̈ −
∫ t

−∞
D(t− τ)q̇(τ) dτ

which, applying the definition and the properties of Fk, yields

sk = akuk + ω2Aq̄k − iωulD̄kq̄k
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where
D̄k = Fk(D) .

If we combine this with our basic equation above, we find that for this type of
generalized force, the solution to our problem is given by

[−ω2
k(I + A) + iωkD̄k + K]q̄k = akuk

S̄∗q̄k = akuk

where
S̄∗ = [−ω2

k(I + A) + iωkD̄k + K] .

This is a nice result. For this type of generalized force, we have reduced a system of
m differential equations to a system of n algebraic equations of order n; i.e. for this
case, the equations uncouple and they are linear. It should be noted that this is the
identical result one normally sees for frequency domain motions of a floating body,
but it looks different. What is normally called the added mass matrix is not only
our A, but this plus a portion of the imaginary part of D̄k. The remainder of D̄k is
normally called the radiation damping matrix.

In view of all of the estimates we made in arriving at (III.50) , it would be pru-
dent to compare results from this estimate with those obtained elsewhere. Most such
comparisions show excellent agreement except near reasonant peaks. In many cases,
radiation damping is simply not enough to adequately predict the response at rea-
sonance. As an aside, reasonance is not really a well defined point here. Since the
matrix depends on frequency, what matrix do we use in finding the eigenvalues? Here,
the term reasonance will be used to describe local peaks in the frequency response.

To augment the radiation damping, we will attempt to add some damping which can
be attributed to viscous effects. In particular, Morrison’s equation contains a term
which, in our notation, can be written as

s =
∑

l

c′l
∑
m

V T
l u′ |wlm| [wlm]

where
wlm =< (amvmlem)− Vlq̇

and the sum over l is over the Morrison elements, the sum over m is over the frequency
components in the wave, vml is the wave particle velocity at the point l due to wave
component m, and c′l is a coefficient which depends on the relative speed between the
wave end the point on the body.

If we attempt to compute the frequency components of this force as we did above, we
will quickly encounter difficulties. The most troublesome thing here is the absolute
value. We have two ways of attacking this difficulty. The first one is to consider the
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above equation one frequency component at a time and assume that the coefficient
is a linear function of the relative velocity! This may seem unreasonable since this is
a nonlinear phenomena, but people have been doing it for years. Before we compute
the transform of the above, let us use our basic expression for the velocity in the
expression for wlm to obtain

wlm =< ((amvml − iωmVlq̄m) em)

or
wlm =

∑
m

alm cos(ωmt + φm) .

Now, dropping the sum over frequency components we can write

sk =
∑

l

c′lV
T

l u′ lim
T→∞

2

T

∫
0

T

ek(t)|wlk| [wlk] dt

or

sk =
∑

l

V T
l u′c′l |wlk|wlk lim

T→∞

2

T

∫
0

T

ek(t)cos(ωkt + φk)| cos(ωkt + φk)| dt .

The integral can now be evaluated quite simply since it is a periodic function. One
simply picks regions where the cosine is positive and then integrates. Doing this, we
find that the value of the integral is 8/3π. Using this result, we obtain the ”final”
representation for the generalized force due to Morrison’s type drag

sk =
∑

l

c∗l (akD
′
lvkl)− iωkD̄

′(c∗l )q̄k (III.57)

where

D′
l = V T

l u′ ,
D̄′(cl) =

∑
l

c∗l D
′
lVl , and

c∗l =
8

3π
c′l |akvkl − iωkVlq̄k| . (III.58)

For those of you who prefer words to mathematics, this result is called ”Equivalent
Linearization” and is well known. The approach adopted here is quite different.
Normally this is done for only a single degree of freedom and is applied ”after the
fact”; i.e. the game is to find an equivalent damping coefficient which will dissipate
the same energy in a half cycle as does the viscous one. The current approach clearly
shows the assumptions involved with obtaining the result and makes one question its
validity.

At this point, it is reasonable to look at an alternative to the above exercise. Let us
again look at the generalized force due to drag,

s =
∑

l

∑
m

c′lV
T

l u′ |wlm| [wlm]
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and rewrite it as
s =

∑
l

c̄l(r̄)D
′
l

∑
m

wlm

where

c̄l = cl

α

√∑
m

|wlm|2


and α is some constant. Computing the transform of this expression is easy, it is
linear. Performing the computation we find

sk =
∑

l

c̄l (akD
′
lvkl)− iωkD̄

′(c̄l)q̄k . (III.59)

This is the same form as with the equivalent linearization, but conceptually quite
different. The equivalent linearization uses the results at a single frequency to obtain a
damping contribution at that frequency. The other scheme (which we will call spectral
linearization) uses a fraction of the root mean square velocity due to all frequency
components at a point to compute a coefficient which is used for all components.
The obvious question is what does one use for α. Here, we can use the statistical
linearization as a bit of a guide. If we have only a single frequency component and
one degree of freedom, then for the two results to be the same α = 8/3π = .8488.
Alternatively, using the RMS is a reasonable approximation in its own right so α = 1
seems reasonable. Finally, if one views the problem from a stochastic perspective,

α =
√

2/π = .797 is found. In summary, α is left to your choice, but values from .8 to
1. seem like a good place to start.

Now, let us look at solving the system of equations when drag is involved. The system
to solve becomes [

S̄∗ + iωkD̄
′(cl)

]
q̄k = s̄∗

k

where
s̄∗

k = akuk +
∑

l

c̄l (akD
′
lvkl) .

Since D̄′ depends on the motion, this is a nonlinear system of equations. To solve
this system, a modified Picard method is used. Suppose we have at least two previous
iterations. Then the system which will be solved is[

S̄∗ + iωkD̄
′
n

]
q̄k = s̄∗

k (III.60)

where

D̄′
n =

1

2

(
D̄′

n−2 + D̄′
n−1

)
;

i.e. we use an average of the damping matrices from the two previous iterations. zero
is used for the damping matrix, until a value has been computed. We have tried
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many schemes over the years and this seems to work better than any other. By using
the average, it stops the wild fluctuations which one can get close to reasonance.

The q̄ values which result from (III.50) are not true response amplitude operators
since the damping coefficient depends on the response. Notice, however, that the right
hand side is linear in ak, so that after we finish finding a solution, we can divide q̄k by
ak to obtain something which ”looks like” response operators. Remember, however,
that some assumption for the sea was used to compute these things. If you look at
the results due to a sea which is drastically different than that used to compute the
response, the results may be open to question. As an example, the following figure
shows the roll ”response operator” computed for several different values of steepness
(wave height used in the linearization). The difference is dramatic.

Moses Roll S33
Moses Roll S52
Moses Roll S75
Moses Roll S133
Model Test

Comparison of MOSES Strip Theory w/Model Tests
405x90x20 ft Barge, 9.0ft draft, Beam Seas
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Figure 2: Effect of Nonlinear Damping

One final task remains here - to include some nonlinear forcing. Toward this end, let
us look at an addition to the generalized force

s =
∑

l

∑
m

<
(
ts
mlel+m + td

mlel−m

)
.

Computing the frequency force, we find

sk =
∑

l

∑
m

(
ts
mlhk,l+m + td

mlhk,l−m

)
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where

hk,l−m =
{

1 if ωk = ωl − ωmi
0 otherwise

and

hk,l+m =
{

1 if ωk = ωl + ωm

0 otherwise
.

This is simply something to add on the right hand side of the equation and does not
influence the solution algorithm at all. What is important here is the we get force
contributions at different frequencies. In particular, we get contributions to q0 from
these forces and we get forces outside the range of periods where the wave forces were
generated. Although we did not explicitly consider it, another form of nonlinearity
includes combinations of the wave excitation and the body velocity. MOSES does
include these terms, but they are, once we have a response, simply more right hand
side contributions.

Another thing of interest here is that we can no longer get anything which masquer-
ades as a ”response amplitude operator”. The response is a nonlinear function of the
input Fourier coefficients. Finally, although we have not considered it here, there are
many other sources of nonlinearities. The easiest to see is the term in the equations
of motion [N + İ]q̇. We have ignored it here because most people do not include
it.
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IV. CONNECTORS

In actuality, a mooring line is itself a dynamic system which can be treated correctly
with ”rod elements”. As an option to using the computer resources required to
solve a system of rod elements, MOSES also allows one to consider mooring lines
approximately, i.e. we consider the global force due to a mooring line as being given
by

f = h(ξ, z)e + v(ξ, z)e∗ (IV.1)

where ξ is the horizontal distance from the vessel attachment point to the anchor, e
is the image in the waterplane of a unit vector from the attachment to the anchor,
e∗ is a unit vector perpendicular to the waterplane point down, and h and v are the
horizontal and vertical components of the force in the line at the attachment. Thus,
we are approximating the behavior of a mooring line as that of a series of catenaries
- ignoring any dynamic behavior and ignoring any force applied to the line except its
weight and buoyancy.

Let us begin by considering the basic equations which follow this assumption and are
applicable to a single segment of line, i.e. we have a piece of line which has constant
properties along its length and has no additional weights or buoyancies along its
length. Thus, we have:

γ =
1

AE
,

` = `1 + `2 ,
`1
∗ = `1[1 + hγ cos(α)] ,

`2
∗ = `2

[
1 +

hγ

`2

∫ `2

o
g(z′)

]
ds ,

`∗ = `1
∗ + `2

∗ ,

β =
h`∗

w`
,

z′ =
`2
∗

β
+ z′o ,

v = hz′ ,
t = hg(z′) ,
z = `1

∗ sin(α) + β[g(z′)− g(z′o)] ,
ξ = `1

∗ cos(α) + β[sinh−1(z′)− sinh−1(z′o)] and
z′o ≥ α . (IV.2)

Here, g is a function which is defined as

g(x) =
√

1 + x2 (IV.3)

and, w is the weight per foot of the segment, ` is the original length of the segment,
`1
∗ is the stretched length of line lying on the bottom, `1 is the original length of line
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which lies on the bottom, `2
∗ is the active length of the line (stretched length of line

not on the bottom), `2 is the original length of line which is now not on the bottom,
z′o is the slope of the line at the bottom end, z′ is the slope of the line at the top
end, z is the vertical distance between the ends of the segment, ξ is the horizontal
distance between the ends of the segment, and t is the tension at the top.

In spite of the number of assumptions on the behavior, the above is a complicated
system of equations, and is non trivial to solve. Let us look at a special case where
γ and α are zero, i.e. we have a rigid line, a bottom with no slope, and there is line
remaining on the bottom. In this case, the above becomes:

` = `1 + `2 ,

β =
h

w
,

z′ =
`2

β
,

v = hz′ ,
t = hg(z′) ,
z = β[g(z′)− 1] , and
ξ = `1 + β sinh−1(z′) . (IV.4)

Next, let us look at some of the implications of these equations. First, notice that
by combining the second, fifth and sixth equations, we have a simple relationship
between the tension and the horizontal force:

t = h + zw , (IV.5)

i.e. so long as we have line on the bottom, the tension is simply the horizontal force
plus the weight of line per foot times the water depth. Now, also notice that the
only part `1 plays is as an addition to the horizontal distance. This means that so
long as there is line on the bottom, it really does not matter how much. Extra line
on the bottom is equivalent to simply moving the anchor. Now this observation is
not strictly true because we have neglected the bottom friction. Bottom friction will
reduce the pull on the anchor based on how much line is on the bottom and thus the
line does have an effect. Also, remember that we assumed the line was rigid. Line on
the bottom will stretch and so it will also have an effect. Despite these effects, the
basic observation is still valid - excess line on the bottom does very little good. We
will come back to what we mean by excess later.

To go about solving the simplified equations, we first assume that h, w, `, and z are
given, so that we also know β. By rearranging the above, we can get a solution:

t = h + wz ,

z′ =
√

(z/β + 1)2 − 1 ,
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`2 = βz′ ,
`1 = `− `2 ,
v = hz′ ,
ξ = `1 + β sinh−1(z′) . (IV.6)

In fact, by virtue of the simple relationship between h and t, we can just as easily
obtain a solution if t is known instead of h.

Now let us again consider the question of excess line. Suppose that the breaking
strength of the line is tb, so using the above, we get

h∗ = tb − wz,

β∗ =
h∗

w
,

z′∗ =
√

(z/β∗ + 1)2 − 1, and
`∗2 = β∗z′∗. (IV.7)

Here, `∗2 is the maximum length of line which we should be using as a function of the
weight per foot, breaking strength, and water depth. In fact, this set of equations
gives the amount of line needed to achieve the desired tension, tb. Unfortunately,
when we relax our assumptions, such a simple state of affairs ceases to exist.

Remember that to achieve these simple results, we basically made two assumptions:
the slope at the bottom was zero and that the line was rigid. In spite of appearances,
relaxing the rigidity assumption is by far the easiest to accomplish. All that is really
necessary is to use a Picard method, i.e. we first solve the problem assuming there
is no stretch. We then compute the stretch and use the new lengths to solve again,
and repeat until the answers do not change much. This process normally converges
in one or two iterations.

Now, let us return to the original system of equations (IV.2) , and notice that there
are really two things happening. First of all, the second through seventh equations
are somewhat self contained. Let us rewrite them as

` = `1 + `2 ,
`1
∗ = `1[1 + hγ cos(α)] ,

`2
∗ = `2

[
1 +

hγ

`2

∫ `2

o
g(z′)

]
ds ,

`∗ = `1
∗ + `2

∗ ,

β =
h`∗

w`
,

z′ =
`2
∗

β
+ z′o, , and

z′o ≥ α . (IV.8)
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Notice that here we have a system of six equations and an inequality in the seven
unknowns: `1, `2

∗ `1
∗, `∗, β, z′, and z′o, provided `2, h, w, γ, and α are known. The

inequality constraint, however, provides the necessary information to solve these. To
see this, consider two situations. First, suppose that the inequality holds. In this
case there is no line on the bottom and `2 = `. Conversely, if equality holds then
z′o = α. One or the other of these two equations provides what is necessary to solve
the above system. Now, consider the remainder of the equations:

v = hz′ ,
t = hg(z′) ,
z = `1

∗ sin(α) + β[g(z′)− g(z′o)] , and
ξ = `1

∗ cos(α) + β[sinh−1(z′)− sinh−1(z′o)] . (IV.9)

These simply suffice to produce results once the first system has been solved. For-
mally, this can be written as

v = g1(h, `2, z
′
o) ,

t = g2(h, `2, z
′
o) ,

z = g3(h, `2, z
′
o) ,

ξ = g4(h, `2, z
′
o) , (IV.10)

and we have suppressed the dependence of the function on all of the assumed prop-
erties of the line. In other words, this says that if we know the properties of a line,
the active length, the horizontal force, and the slope at one end, we can compute
all of the other things of interest. Unfortunately, this is not really what we want.
Notice that two of the things that we compute here are z and ξ. We normally want to
specify these and compute h and the active length. For the case of a single segment,
there are any number of algorithms available to accomplish what we desire, but for a
more general case they become quite difficult to implement and consume quite a bit
of computer resources.

Here, we propose a simple solution. By building a table of the properties (tension,
horizonal force, etc.) of the line as a function of distance between the two ends for
a fixed vertical separation, we solve the above system of equations and pick only the
solutions for a given value of z. In other words, what we need to do is pick a set of
horizontal forces and then solve the equation

z∗ = g2(h, `2, z
′
o) (IV.11)

for each h to obtain the value of either `2 or z′o which gives the desired value of z∗.
The inequality constraint complicates matters here, so let us look at a special point
where `2 = ` and z′o = α, i.e. the point where all of the line is active, but remains
tangent to the sea floor. If the value of z obtained from the above equation for this
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point is greater than the desired value, we must have line on the bottom to achieve
the desired value and we will be solving the equations

z∗ = g2(h, `2, α) and
`2 ≤ ` . (IV.12)

Otherwise, we will be solving the equations

z∗ = g2(h, `, z′o) and
z′o ≥ α . (IV.13)

In either case we have a single equation and a single unknown. The question remains
as to how to solve this equation since g2 is a formal representation. Notice, however,
that in either case the unknown has a bound. If we could find a bound on the
other side, then we could use an interval halving algorithm to obtain a solution.
Fortunately, the other bound is not hard to get in either case. For the first one, we
know that the length of line must be greater than the distance along the bottom to
the vessel and then up. The other case is a bit more difficult. Here, we will use the
slope of a taut line as an upper bound.

At this point, we have solved the problem for a single segment of line. If the slope at
the bottom is zero, this is a well behaved problem. If, however, the slope is non zero,
difficulties arise. Perhaps the most obvious is that the problem can easily become
badly posed. For example, suppose that the bottom slope is positive, i.e the sea floor
decreases in depth as one approaches the vessel. One can input numbers here which
make no sense - cases where the ship is below the seafloor. Alternately, suppose that
the slope is a large negative number. This corresponds to the case where there is
no seafloor at all. An obvious problem here is the bounding scheme for the halving
algorithm - the slope is so large that halving will take forever, or the numbers get so
large that numerics makes the problem impossible to solve. A more serious problem,
however, is that some of the things we wish to solve for do not have unique solutions.
For example, consider a hanging line with ends at the same vertical location. We
wish to find the length of line which yields a given tension. There are cases where
this problem has two solutions, one with a small ` and large h, and another with
large ` and small h. To see this, consider the problem above with zero slope and ask
if there are two values of z which yield the same tension? Therefore, be warned that,
when you use sloping bottoms and get questionable results, MOSES may not be to
blame - you may have a real solution but it is not the one you wanted.

Now, let us consider a line composed of multiple segments. The same equations
apply, only this time they are valid for each segment, and we have n segments. In
addition, at the interface between segments, we have an additional condition: the
slope is discontinuous as

z′k+1 =
bk

h
+ z′k (IV.14)
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where z′k+1 is the slope at the bottom of the k + 1 segment, z′k is the slope at the
top of the k segment, and bk is the weight concentrated at the connection between
the segments. So long as all of bk are positive, our original algorithm works as
outlined above except that we must first find which segment marks the boundary
between line on the bottom and active line. Negative values of bk cause difficulties
because implicit in all of our arguments has been the fact that the slope of the line
is a monotone function of distance from the bottom. The lack of monotonicity also
occurs for negative bottom slopes and is responsible for the non-uniqueness discussed
above. As a result, it is not surprising that spring buoys cause problems. One of
the most obvious problems is that one can have ”intermediate” grounding - the line
from a bouy goes below the surface. These effects are ignored since they occur at
tensions where one is not really interested in the solution anyway. Another problem
is that without some constraint, the bouy could be above the water surface. This is
a real concern because many buoys are designed to operate floating on the surface
and to have them flying about would lead to serious errors. Thus, for each spring
bouy we need to add a constraint that instead of a fixed force we have an inequality
constraint:

zk+1 ≤ 0 and

z′k+1 − z′k ≤ bk

h
. (IV.15)

So long as the connection point is below the water surface, equality holds; otherwise
only the fraction of the buoyancy required to hold the connection in the water surface
will be applied.
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V. MISCELLANEOUS TOPICS

This section contains several discussions which, ideally, should be parts of larger
discussions. None are really long enough to stand by themselves and the larger issues
have not been completely addressed. Many people, however, have asked about these
things so we have included them.
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V.A Beam Slenderness

A critical feature of all structural code checks is the Euler critical stress:

σe =
π2E

λ2
(V.1)

where the slenderness λ is given by

λ =
kl

r

and r, the radius of gyration is given by

r =

√
A

I
(V.2)

and I is the inertial of the section. Now, for a beam which has the same section
along its length, this is well defined. If a beam is composed of several segments with
different sections, however, things are not clear. Two possibilities come to mind. One
could check each section using a slenderness based on the geometrical properties of
that section and the total length, or one could compute a slenderness based on the
true buckling behavior of the beam. The first alternative is really too conservative
to be of value.

To get an equivalent σe, let us recast the above as

σe =
Pc

A

where Pc is the Euler critical load for the beam as a whole and A is the area of the
cross section at any point along the beam. To estimate a value for Pc, we will employ
a Raleigh quotient:

Pc =

∫ kl
0 EIy”2

dx∫ kl
0 y2dx

where y is the lateral deformation of the beam. If we make the normal assumption
that the deformation is a sine curve this can be written as:

Pc = α2

∫ kl
0 EI cos2(αx)dx∫ kl

0 sin2(αx)dx
(V.3)

where α = π/kl. Now, this looks much better if it is written as

Pc = (
π

kl
)
2

EI (V.4)
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where

EI =

∫ kl
0 EI cos2(αx)dx∫ kl

0 sin2(αx)dx
(V.5)

Combining these with the above yields

λ̄ =
kl

r̄

where

r̄ =

√
EA

EI
(V.6)

Now, what we have accomplished is that one can now use the standard formulae,
(V.1) , for computing the Euler critical stress for a non-prismatic beam provided
that one uses (V.6) instead of (V.2) for the slenderness at each point.

Finally, let us return to (V.5) and use the fact that the beam is a set of sections
with constant properties to get

EI =
2α

π

∑
i

EiIi

∫ kxi

kxi−1

cos2(αx)dx

or carrying out the integration,

EI =
∑

i

EiIi

{
(xi−1 − xi)

l
+

1

2π
[sin(2αxi)− sin(2αxi−1)]

}
(V.7)

Notice that if there is only a single segment, (V.7) reduces to the standard result.
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V.B Joint Crushing

Joint crushing is an investigation of whether or not a chord will fail under the action of
all of the braces and the chord stress itself. In general, this is a complicated problem
and in MOSESit will be simplified by reducing it to a two dimensional problem. In
particular, the joint will be modeled as a two dimensional ring with distributed loads
applied where the braces intersect the chord. The stresses in the ring are computed
at thirty six positions around the ring and then they are compared with allowable.

In computing the load applied by the brace to the ring several assumptions are made.
The two most important are: that the force in the brace parallel the chord can be
neglected and the distance along the chord over which a brace force will be distributed
is the same for all braces. Both of these are simply implications of the use of a two
dimensional model. The real question is how is the ”effective joint length” obtained.
Here, we follow API RP2a. If there are no rings then effective length is 2.5 times the
chord diameter plus the maximum distance along the chord between two brace/chord
intersection points. If rings are present, then the effective length is

√
Dt where D is

the chord outside diameter and t is the chord thickness.

To compute the forces in the ring, two formulae from Roark [5] are used. In
particular, Formula 20 and 8 from Chapter 8 Table 17 are added to represent the loads
in the ring. Here, angle over which the load is applied is defined by the brace/chord
intersection for a tubular brace and by one inch for non-tubular braces.

The two formulae above yield loads (an axial load, a bending moment, and a shear
force). To convert these into stresses, more formulae from Roark are employed -
Formula 1, 13, or 15 from Chapter 8, Table 16, depending on the type of ring. For
no ring, Formula 1 is used, for rings made from flat bar, Formula 13 is used, and for
rings that are tees, Formula 15 is used.

Finally to compute an interaction ratio, one must have allowable stresses. Here, .6Fy

is used for axial and bending and .4Fy is used for shear. Both of these factors will be
altered by any allowable stress modifier before it is used.
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